本文引用格式: 黄星星,李东铭,卫红,等.大功率微波电源散热优化设计[J].自动化与信息工程,2023,44(1):39-45.

HUANG Xingxing, LI Dongming, WEI Hong, et al. Optimal design of heat dissipation of high-power microwave power supply[J]. Automation & Information Engineering, 2023,44(1):39-45. RING

大功率微波电源散热优化设计

黄星星1 李东铭2 卫红1 侯少毅1

(1.季华实验室, 广东 佛山 528251

2.东方电气(广州)重型机器有限公司,广东广州 510000)

摘要: 针对大功率微波电源功率损耗引起的机箱内部散热问题,设计强制水冷和强制风冷相结合的散热方 案。首先,通过对机箱内部的结构、流场和热场的分析,进行大功率微波电源散热设计;然后,建立和简化大功 率微波电源机箱三维模型;最后,利用 ANSYS 仿真软件进行流固耦合传热仿真分析,优化大功率微波电源的结 构设计,满足其散热要求,解决发热器件的散热难题。

关键词: 微波电源: 散热: ANSYS: 流固耦合传热: 仿真分析

中图分类号: TB771 文献标志码: A 文章编号: 1674-2605(2023)01-0007-07 DOI: 10.3969/j.issn.1674-2605.2023.01.007

Optimal Design of Heat Dissipation of High-power Microwave Power Supply

HUANG Xingxing¹ LI Dongming² WEI Hong¹ HOU Shaoyi¹

(1. Jihua Laboratory, Foshan 528251, China

2. Dongfang (Guangzhou) Heavy Machinery Co., Ltd., Guangzhou 510000, China)

Abstract: In view of the internal heat dissipation problem caused by the power loss of high-power microwave power supply, a heat dissipation scheme combining forced water cooling and forced air cooling is designed. Firstly, through the analysis of the structure, flow field and thermal field inside the case, the heat dissipation design of high-power microwave power supply is carried out; Then, the three-dimensional model of high-power microwave power supply box is established and simplified; Finally, the fluidstructure coupling heat transfer simulation analysis is carried out using ANSYS simulation software to optimize the structure design of high-power microwave power supply, meet its heat dissipation requirements, and solve the heat dissipation problem of heating devices.

Keywords: microwave power supply; heat dissipation; ANSYS; fluid structure coupling heat transfer; simulation analysis

引言 0

随着电子信息技术的快速发展,电子器件的性能 不断提高;同时,单个电子器件的尺寸不断缩小,集 成程度也不断提高,导致电子设备和器件的热流密度 越来越高。根据美国气动航空电子研究协会的统计分 析,55%的电子设备失效是由内部电子器件温度超标 引起的[1-2];并且随着工作温度的升高,晶体管失效率 呈指数级增长[3]。因此, 散热优化设计对保障电子设 备和器件的安全可靠性是非常必要的[4-5]。

大功率微波电源由于工作功率大、电离强度高、 发热量大、输出功率稳定性要求高、连续工作时间长 等特点,易产生局部高热量聚集^[6-7]。本文借助ANSYS 软件对大功率微波电源机箱内部的结构、流场、热场 进行仿真分析,并根据仿真结果进一步优化大功率微 波电源散热设计。

建立模型 1

1.1 数值模型

大功率微波电源机箱主要包括 AC/DC 模块、

DC/DC 模块、散热器、前板、尾板及外壳等组件,示 意图如图 1 所示。

图 1 大功率微波电源机箱示意图

如图 1 所示,大功率微波电源的 4 个 DC/DC 模 块均匀固定在散热器上。经测算,大功率微波电源总 发热量约为2 kW,主要集中于 DC/DC 模块中的 IGBT 模块和变压器。IGBT 模块和变压器通过导热硅脂与 散热器铝基板粘连,并采用螺丝和压板紧固。DC/DC 模块尾部装有 2 台风扇,将常温空气吹入散热器的翅 片区域,冷却翅片。散热器铝基板采用铝材质^[8],内 有材质为铜的水冷铜管。水冷铜管通入恒温去离子水, 冷却散热器铝基板。散热器结构如图 2 所示。

图 2 散热器结构示意图

为便于仿真分析,本文对散热器模型进行简化, 去除对仿真结果影响不大的部件,仅保留铝基板、翅 片、水冷铜管、风扇、DC/DC 模块。将4个 DC/DC 模块简化为4个 IGBT 模块热源底座和4个变压器热 源底座,并定义为热源。其中,水冷铜管与铝基板之 间、铝基板与翅片之间涂有导热硅脂。

1.2 边界条件

利用 ANSYS 仿真软件对散热器简化模型做预处

理单元处理。ANSYS 预处理单元不仅可以修改模型,还可以定义材料属性、输入载荷、求解类型和各种边界条件。散热器简化模型设置的各种边界条件及输入参数为:

1)整体计算区域选在大功率微波电源机箱外壳
内,忽略机箱与外部空气的对流换热;

2) IGBT 模块与变压器简化为面热源附着在散 热器铝基板表面;

3) 风扇简化为入口、出口,添加在计算区域边 界,风扇入口流量为 30 CFM,环境温度为 25 ℃;

4) 冷却水流量为5 L/min,流速为1.87 m/s, 入口水温设置为22 ℃;

5) 铝基板与翅片之间的导热硅脂厚度为0.1 mm, 导热率为3 W/(m·K);

6) 简化流体管道结构,将流体通道及水冷铜管 作为等截面圆考虑。

散热器简化模型如图3所示。

图 3 散热器简化模型

1.3 网格划分

散热器简化模型网格划分如图4所示。

图 4 散热器简化模型网格划分示意图

黄星星 李东铭 卫红 侯少毅:大功率微波电源散热优化设计

由于流体管道比较复杂,采用致密的非结构网格可以保证网格过渡光滑、贴体。散热器简化模型采用 非连续网格设置,背景网格为全模型的1/20,流体网 格为3 mm,翅片网格为8 mm。网格即便进行了优 化,但总数仍超过100 万个。

2 仿真分析

大功率微波电源由风冷和水冷共同散热。其中, 风冷散热的主要部件是风扇和翅片;水冷散热主要依 赖冷却水。因此,选取冷却水流量、风扇入口流量、 翅片厚度作为变量进行仿真分析。初始工况如表1所 示,每种变量分别选择4个不同工况,具体参数如表 2所示。

2.1 冷却水流量仿真分析

利用 ANSYS 仿真软件对冷却水流量(5 L/min、 15 L/min、25 L/min、35 L/min)分别进行仿真分析,

řan.1 block.1

(c) 25 L/min

结果如图5和表3所示。

表1 初始工况	参数	
参数	数值	
环境温度	25 °C	
热源总功率	2 kW	
冷却水流量	5 L/min	
入口水温	22 °C	
风扇入口流量	30 CFM	
导热硅脂热导率	3 W/(m·K)	
导热硅脂厚度(翅片)	0.1 mm	
翅片厚度	0.5 mm	

表 2 各变量工况列表

变量	工况1	工况 2	工况 3	工况 4
冷却水流量/(L/min)	5	15	25	35
风扇入口流量/CFM	10	30	50	70
翅片厚度/mm	0.5	0.9	1.2	2.0

(b) 15 L/min

图 5 不同冷却水流量的仿真分析结果

Temperature [C]

33 4307

31,7977

30.1648

28.5318

26.8988

25.265

23.6330

22.0000

	表 3 不同冷却水流量下出水口温度		
序号	冷却水流量/(L/min)	冷却水管出口水温/℃	
1	5	26.8	
2	15	24.7	
3	25	23.2	
4	35	22.8	

由图 5 和表 3 可以看出:随着冷却水流量的增加, 热源区域的最高温度约从 42 ℃下降到 35 ℃;冷却 水管出口水温从 26.8 ℃下降到 22.8 ℃,但当冷却水 流量大于 15 L/min 时,热源区域最高温度和冷却水 管出口水温下降较小,表明加大冷却水流量能提高散 热能力,但在冷却水流量过大的情况下,冷却水未能 充分换热即流走,没有起到更好的冷却效果。因此, 考虑到散热效果及资源的应用效率,冷却水流量设定 范围为 5~15 L/min。

block_sir_1 apening_1 screenbly_1 b gck_2 assembly_1 assembly_1 b gck_2 b gck_

(c) 50 CFM

2.2 风扇入口流量仿真分析

利用 ANSYS 仿真软件对风扇入口流量(10 CFM、 30 CFM、50 CFM、70 CFM)分别进行仿真分析, 结果如表 4、图 6、图 7 所示。

由图 6 可以看出:随着风扇入口流量的增加,吹入翅片区域的风速显著提高,约从 2 m/s 线性增加到 14 m/s;但增大风扇入口流量并未明显扩大冷风覆盖面积。

表 4 不同风扇入口流量条件下的出水口温度

序号	风扇入口流量/CFM	出口水温/℃
1	10	27.1
2	30	26.9
3	50	26.9
4	70	26.8

(b) 30 CFM

(d) 70 CFM

UT!

黄星星 李东铭 卫红 侯少毅:大功率微波电源散热优化设计

(c) 50 CFM

(d) 70 CFM

图 7 不同风扇入口流量条件下的模型温度分布云图

由图 7 可以看出:随着风扇入口流量的增加,热 源区域最高温度和冷却水管出水口温度变化不大,分 别约为 42 ℃和 27 ℃。因此,此范围的风扇入口流 量对散热效果影响较小, 10 CFM 的流量足以满足使 用要求。若风扇入口流量减小,风扇体积和内部风场

(a) 0.5 mm

引起的风噪声也会随之减小。

2.3 翅片厚度仿真分析

利用 ANSYS 仿真软件对翅片厚度(0.5 mm、 0.9 mm、1.2 mm、2.0 mm)分别进行仿真分析,结 果如图8和表5所示。

图 8 不同翅片厚度条件下模型温度分布云图

序号	翅片厚度/mm	出口水温/℃
1	0.5	27.1
2	0.9	26.9
3	1.2	26.8
4	2.0	26.8

表 5 不同翅片厚度条件下的出水口温度

由图 8 可以看出:随着翅片厚度的增加,热源区 域最高温度和冷却水管出水口温度变化不大,分别约 为 42 ℃和 27 ℃。因此,翅片厚度对散热效果影响 较小。考虑到加工难度,以及翅片过厚会减小翅片间 空气流通的面积,增大流阻及风噪,翅片厚度选取范 围为 0.5~1 mm。

3 优化设计

根据以上仿真分析结果,对大功率微波电源结构 进行优化设计:

1) 综合考虑电源散热性和能源经济性,冷却水 流量从 5 L/min 提升到 10 L/min;

2) 考虑到风扇入口流量对散热效果影响较小, 冷却风扇入口流量由 30 CFM 降为 10 CFM;

3) 考虑到翅片厚度对散热效果影响较小,翅片 厚度选择为1 mm。

4 结论

本文采用数学建模和有限元分析方法,利用 ANSYS 仿真分析软件,对大功率微波电源散热结构 进行分析,提出针对冷却水流量、冷却风扇入口流量 及翅片厚度的结构优化措施,使大功率微波电源机箱 布局趋于合理,具备良好的散热性能,确保满足 IGBT 等高发热器件的冷却需求,为其他电气设备热设计仿 真分析提供参考和依据。

本课题的研究尚有许多待开展之处,如翅片周围 流场与流阻的计算及仿真分析研究。通过相应分析, 将进一步减小冷却风扇入口流量,这对大功率微波电 源的噪声控制及能耗降低具有积极的意义。

参考文献

- YUN C S. Static and dynamic thermal behavior of IGBT power modules[D]. Zürich, 2000.
- [2] 戴夫·S.斯坦伯格.电子设备冷却技术[M].2 版.北京:航空工 业出版社,2012.
- [3] 余小玲.电力电子集成模块及新型翅柱复合型散热器的传 热性能研究[D].西安:西安交通大学,2005.
- [4] 王迪.电子元件散热器翅片自然对流散热性能研究[D].天津: 河北工业大学,2020.
- [5] 黄晓明,师春雨,孙佳伟,等.翅片式热管散热器自然对流换热 特性分析与多目标结构优化[J].热科学与技术,2018,17(5): 359-365.

- [6] 尹钇涵,汪建华,秦道东.大功率稳定微波电源设计[J].通信电源技术,2019,36(4):110-112.
- [7] 刘行行.大功率微波磁控管电源研究[D].武汉:武汉工程大

[8] 陈名刚.电力电子中IGBT 散热器选型应用[J].流体测量与控制,2021.2(5):39-41;50.

作者简介:

黄星星,男,1989年生,硕士研究生,工程师,主要研究方向:半导体设备及器件研发。E-mail:huangxx@jihualab.com 李东铭,男,1981年生,博士,高级工程师,主要研究方向:力学分析。E-mail:lidm@dongfang.com 卫红,男,1970年生,本科,高级工程师,主要研究方向:真空技术与设备。E-mail:weihong@jihualab.com 侯少毅,男,1983年生,硕士研究生,工程师,主要研究方向:真空设备。E-mail:housy@jihualab.com

学.2017.

(上接第26页)

4 结束语

本文以 2022 年加拿大汽车燃油消耗等级数据中的 CO₂ 排放量作为研究目标,汽车的其他信息数据作为特征,分别基于 4 种机器学习算法建立了汽车 CO₂ 排放量预测模型。预测结果表明,调参后的基于梯度提升树算法构建的模型具有较高的预测精度。当以克每公里为单位统计 CO₂ 的排放量时,模型对 284 个样本测试结果的均方根误差仅为 4.93,平均百分比误差仅为 0.71%。本文研究可为汽车环保部门测量汽车的CO₂ 排放量提供一种新思路。

参考文献

- [1] 王丽君.西安市机动车污染现状及防治对策研究[D].西安:西 安建筑科技大学,2018.
- [2] 王志欣,代长安,张博乾.汽油发动机尾气的售后治理措施[J]. 时代汽车,2021,350(2):176-177.
- [3] 王刚,钱超,杨国良,等.基于轻型汽车排放测试系统的 PEMS 测量精度验证[J].工业计量,2021,31(5):5-9.

- [4] 苏茂辉.汽车排放测量技术与方法研究[D].武汉:武汉理工大学.2006.
- [5] 隋修武,李阳,杜玉红,等.汽车排放瞬态工况法测量用气体流量分析仪[C]//2008 中国仪器仪表与测控技术进展大会论文集(I),总第159 期,2008-05,中国湖南湘潭:《仪器仪表学报》 杂志社,2008:181-184.
- [6] 李小颖,侯志祥.神经网络软测量技术在汽车发动机排放中的应用[J].交通与计算机,2002(3):46-48.
- [7] 刘振江.影响巷道出口温湿度的单因素分析及正交实验研 究[D].青岛:青岛理工大学,2019.
- [8] 张馨露.基于随机森林回归的出租车排放因子影响因素研 究[D].沈阳:辽宁大学,2020.
- [9] 孔祥强,刘晓东,尚燕平,等.基于多元线性回归直膨式太阳能 热泵性能预测[J].太阳能学报,2022,43(1):443-449.
- [10] 张子薇.基于改进GBDT算法的光伏发电功率预测研究[D]. 保定:华北电力大学,2018.
- [11] 李泽宇.云计算下基于优化 XGBoost 的网约车供需预测研 究[D].呼和浩特:内蒙古工业大学,2018.
- [12] 杨茂,陈新鑫,张强,等.基于支持向量机的短期风速预测研 究综述[J].东北电力大学学报,2017,37(4):1-7.

作者简介:

薛云飞,男,1997年生,硕士研究生,主要研究方向:数据挖掘与人工智能。E-mail:1778803707@qq.com

2023 年 第 44 卷 第 1 期 自动化与信息工程 45